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Medicinal plants with anti-SARS-CoV activity repurposing 
for treatment of COVID-19 infection: A systematic review 

and meta-analysis

The novel SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus) has emerged as a significant threat to public 
health with startling drawbacks in all sectors globally. This 
study investigates the practicality of some medicinal plants 
for SARS-CoV-2 therapy using a systematic review and 
meta-analysis of their reported SARS-CoV-1 inhibitory 
potencies. Relevant data were systematically gathered from 
three databases, viz., Web of Science, PubMed and Scopus. 
The information obtained included botanical information, 
extraction method and extracts concentrations, as well as 
the proposed mechanisms. Fourteen articles describing 30 
different plants met our eligibility criteria. Random effects 
model and subgroup analysis were applied to investigate 
heterogeneity. According to subgroup analysis, the sub-
stantial heterogeneity of the estimated mean based on the 
IC50 values reporting the most potent anti-SARS-CoV 3C- 
-like protease (3CLpro) inhibitors (10.07 %, p < 0.0001), was 
significantly higher compared to the most active anti-
SARS-CoV papain-like protease (PLpro) inhibitors (6.12 %, 
p < 0.0001). More importantly, the literature analysis revealed 
that fruit extracts of Rheum palmatum L. and the compound 
cryptotanshinone isolated from the root of Salvia miltiorrhiza 
(IC50 = 0.8 ± 0.2 mmol L–1) were excellent candidates for anti- 
-SARS-CoV targeting PLpro. Meanwhile, iguesterin (IC50 = 
2.6 ± 0.6 mmol L–1) isolated from the bark of Tripterygium regelii 
emerged as the most excellent candidate for anti-SARS- 
-CoV targeting 3CLpro. The present systematic review and 
meta-analysis provide valuable and comprehensive infor-
mation about potential medicinal plants for SARS-CoV-2 
inhibition. The chemotypes identified herein can be adopted 
as a starting point for developing new drugs to contain the 
novel virus.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identi-
fied as the causative agent for the novel pneumonia-type coronavirus disease 2019 
(COVID-19) (1, 2). The outbreak of this disease remains among public health emergencies 
of international concern as earlier declared by the World Health Organisation (3). As of 
August 16th 2021, about 222 countries have been affected by this coronavirus, and there 
were ~209 million confirmed cases and ~ 4.4 million deaths have been recorded globally. 
The symptoms of COVID-19 include cough, fever, fatigue, myalgia and dyspnoea, with the 
less common manifestation of runny nose, headache, nasal congestion, sore throat, and 
diarrhoea (1, 4). Severe conditions such as pneumonitis, acute respiratory distress syn-
drome (ARDS), respiratory arrest, inflammatory-induced lung injury, sepsis, and multiple 
organ failure are associated with critically ill COVID-19 patients, consequently resulting 
in fatalities (5–7).

Coronaviruses (CoVs) belong to the family Coronaviridae, and all species responsible 
for severe acute respiratory syndrome (SARS) fall under the genus beta-coronavirus (8), 
most of which is enzootic, and only a few are known to infect humans directly. Having 
established an animal-human host transmission, the lethality of CoVs has been demon-
strated by past outbreaks of SARS and the Middle East respiratory syndrome (MERS) in 
the years 2003 and 2012, resp. (9–11).

The whole viral genome of the novel SARS-CoV-2 has a 96 % similarity to the bat CoV 
and 79.6 % sequence identity to SARS-CoV (12). Empirical evidence has shown that 
although SARS-CoV-2 (reported as 2019-nCoV) is closer to bat-SL-CoVZXC21 and bat-SL- 
-CoVZC45 at the whole-genome level, the receptor-binding domain of SARS-CoV-2 falls 
within a lineage closer to that of SARS-CoV (13). Genome transcription of beta-corona
viruses yields a polypeptide of approximately 800 kDa, which produces several proteins 
upon proteolytic cleavage, a process mediated by either the papain-like protease (PLpro) 
or 3-chymotrypsin-like protease (3CLpro) (14, 15). In addition, SARS-CoV emerged from a 
zoonotic reservoir and coupled with cytokine, chemokine, and interferon-stimulated gene 
(ISG) responses in patients, evidence that SARS-CoV pathogenesis is partially controlled 
by innate immune signaling (16–19). The drug targets among coronaviruses include the 
main protease (Mpro also called 3CLpro) and papain-like protease(s). The Mpro is liable to 
block viral replication, meanwhile, papain-like protease (PLpro) is essential for processing 
the polyproteins translated from the viral RNA (14, 21–23). Thus, 3CLpro and PLpro are 
validated drug targets for developing antiviral agents against CoVs.

Although the reported cases of previous SARS outbreaks were confined in Asia, the 
magnitude of the COVID-19 pandemic has presented a more insidious threat to global 
health and man’s livelihood. Nonetheless, the identification of new drugs with high effi-
cacy against CoVs is still elusive. As the search for drugs to combat COVID-19 continues, 
plant-derived compounds present a catalogue of potential anti-SARS-CoV-2 therapeutics, 
recording significant inhibitory effects on SARS-associated CoVs (24–26). These natural 
products provide active pharmaceutical ingredients and structural blueprints for design-
ing their synthetic analogues with improved antiviral activity (27). Therefore, the present 
review aims to systematically evaluate existing reports on the anti-SARS-CoV activities of 
medicinal plants and their associated bioactive compounds to identify potential drug can-
didates for COVID-19 therapy.
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METHODOLOGY AND DATA SOURCES

Data curation

The articles subjected to meta-analysis were extracted from the following databases: 
PubMed, Web of Science and Scopus. These databases were searched within English language 
papers published between 2005 and 2020, on medicinal plants used in the treatment of 
SARS-COV infection. The databases were searched using a combination of the following 
keywords: “coronavirus,” “SARS-CoV”, “COVID-19”, “medicinal plants”, “traditional medi-
cine”, “Chinese medicine”, “plant extract”, “cysteine protease”, “severe acute respiratory syn-
drome”, “SARS-CoV-1 or SARS-COV-1”, “SARS-CoV-2 or SARS-COV-2”, “herbs”, “SARS-CoV 
3CLpro”, “SARS-CoV PLpro” and “antiviral agent”. A total of 664 published articles between 
the years 2005 and 2020 were identified; a schematic representation of the selection process 
for reviewed articles is given in Scheme 1. As a complementary procedure, the relevant studies 
were checked manually for any citation missed by the electronic database.

Scheme 1

Characteristic evaluation and inclusion barometer

The systematic review was achieved using the PRISMA guidelines protocol (28). Eligi
bility criteria were set as follows: articles written in English, articles published between 
years 2005 and 2020, medicinal plants tested against SARS-CoV 3CLpro and PLpro 
enzymes, and their respective isolated compounds. The exclusion criteria include animal 
and clinical trial studies. Notably, studies devoid of either mean or standard deviation of 
inhibitory potencies were also excluded from the meta-analysis to maintain the quality of 
the findings.
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Data synthesis and statistical analysis

The retrieved data were statistically analyzed, and the Stata 15.0 (Stata Corp, College 
Station, TX, USA) was used for the graphical representation of the pooled data. Statistical 
heterogeneity was assessed by both a Cochran’s chi-squared test (Q test) and an I-squared 
test. A fixed-effects model was used when there was no significant statistical heterogeneity 
(p > 0.1 and an I2 value < 50 %). In other cases, a random effects model statistical approach 
was employed. In this study, because the extracted articles were from the general popula-
tion, a random effects meta-analysis was considered to be taken from an inverse-variance 
model. Effect sizes (ES) were estimated using the forest plot as a prelude for heterogeneity 
and biases examinations. In this study, the random effects model was applied to estimate 
and detect sources of statistical heterogeneity that may arise for different reasons. Further-
more, subgroup analysis was conducted to test whether there are subsets of the included 
studies that capture the pooled ES. The funnel plot and Egger’s tests were simultaneously 
used to assess potential publication biases.

RESEARCH OUTCOMES

Meta-analysis

A forest plot is an orthodox device used to visualize how the estimate of ES of each 
study is distributed around a zero or pooled effect estimate. The ES estimate of each study 
is represented in the forest plot as a square box. The area of each box represents the weight 
of each study contributing to the pooled estimate while the center of a diamond equals the 
pooled effect estimate. The ends of the diamond indicate the limits of 95 % confidence 
interval (CI). Hence, the heterogeneity test and Q statistics gave significantly large value 
(chi-square = 5860.22, df = 19, p < 0.0001, I2 = 99.7 %), indicating the presence of enormous 
variation among studies. The residual amount of heterogeneity indicates the extent of vari-
ability as compared with the effect size. Besides, the percentage of total variation resulting 
from heterogeneity across studies is substantial for I2. These findings generally imply that 
the proportion of total variance among pooled studies (i.e., IC50 of the active compounds) 
can be attributed to the accuracy of evaluation of heterogeneity in the effect sizes. The 
pooled estimated mean using the fixed effect model showed significant heterogeneity 
between the studies. Hence, we performed the analyses using the random effects model. 
Using the random-effects model, the estimated pooled mean of potential anti-SARS-CoV 
compounds based on the IC50 was 6.12 % (95 % CI 6.09-6.16) with significant heterogeneity 
between studies (I2 = 99.7 %, p < 0.0001). The pooled estimated mean of the potential anti-
SARS-CoV compounds based on the IC50 is presented using a forest plot (Fig. 1).

The main void of the heterogeneity concept is that it provides only global measures 
without additional information about the sources of heterogeneity. The inherent void de-
mands that subgroup analysis is to be performed to unveil the sources of heterogeneity. 
Subgroup analysis is the splitting of the participant data into subgroups to establish com-
parisons between sub-data. The interpretation of subgroup meta-analysis can lead to in-
formative insights into the proper implication that would not be obtained from the non-
subgroup analysis. Thus, an analysis of the isolated compounds subgroup was conducted 
to assess the potential heterogeneity between the studies included in the meta-analysis. 
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Further, the subgroup analysis was conducted using 3CLpro and PLpro inhibitors to 
assess the potential heterogeneity between the studies; the findings established a statisti-
cally significant difference (p < 0.001) in the subgroup. Of the 20 studies, the highest pooled 
estimated mean was found in studies reporting 3CLpro inhibitors [10.07 % (95 % CI: 9.29–
10.85), I2 = 99.7 %], followed by the studies conducted with PLpro inhibitors [6.12 % (95 % 
CI: 6.08–6.15), I2 = 99.7 %] (Fig. 2). This result suggests that the inhibitory potencies (IC50) 
against 3CLpro and PLpro were significantly different among the active compounds.

Furthermore, one of the medicinal plants active against SARS-CoV in vitro includes 
Tribulus terrestris. The plant belongs to the genus Tribulus (Zygophyllaceae), a large, hetero-
geneous and widely dispersed genus comprising of twenty-seven species (29, 30). T. ter-
restris, the most researched species, is rich in steroids, saponins, flavonoids, sterols, lignan 
amides and cinnamic acid (30–32). The pharmacological applications of T. terrestris such as 
anticancer, antioxidant, anti-inflammatory, antidiuretic, and antimicrobial have been 
reported (33, 34). Song et al. (35) revealed that the methanolic extracts of T. terrestris fruits 
showed superior inhibitory activity towards SARS-CoV PLpro compared to ethyl acetate, 
hydroalcoholic and aqueous extracts. Purification of the isolated compounds from the 
methanolic extracts unveiled cinnamic amide derivatives. All the isolated compounds dis-
played significant PLpro inhibition with IC50 values of 15.8–70.1 mmol L–1 (Table I). The 
highest inhibitory potency was observed for terrestrimine (1) and terrestriamide (2) with 
IC50 of 15.8 ± 0.6 and 21.5 ± 0.5 mmol L–1, resp. (Fig. 3).

Fig. 1. Overall pooled mean estimate obtained for active chemical constituents (IC50) tested against 
SARS-CoV proteases.
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The roots of Isatis indigotica, a member of the family Cruciferae, native to China, are 
known for their potency against influenza, hepatitis A and Japanese encephalitis (48–50). 
Lin et al. (36) examined the efficacy of five major compounds of I. indigotica root, namely, 
indigo, indirubin, indican, sinigrin and beta-sitosterol, and seven plant-derived phenolic 
compounds, namely, aloe emodin, hesperetin, quercetin, naringenin, daidzein, emodin 
and chrysophanol, which were tested for anti-SARS-CoV 3CLpro effects using cell-free 
and cell-based cleavage assays. Only two phenolic compounds, aloe emodin and hespe
retin, isolated from the aqueous extracts of the plant’s root, dose-dependently inhibited 
cleavage activity of the 3CLpro, in which the IC50 was 366 mmol L–1 for aloe emodin and 8.3 
mmol L–1 for hesperetin in the cell-based assay (Table I). Sinigrin (3) (IC50 = 217 mmol L–1) 
and hesperetin (4) (IC50 = 8.3 mmol L–1) shown in Fig. 4 emerged as potential leads for de-
veloping inhibitors of SARS-CoV 3CLpro. Sinigrin was more efficient in blocking the cleav-
age processing of 3CLpro than indigo (IC50 = 300 mmol L–1). The report from the literature 
accredited the antiviral effect of sinigrin (3) and hesperetin (4), including poliovirus, pseu-
dorabies virus, Sindbis virus, herpes simplex virus types 1 and 2, parainfluenza virus and 
vaccinia virus (51–53). In addition, the most potent compounds, i.e., sinigrin (3) and hes-
peretin (4) with CC50 of above 2 mmol L–1 were considerably less cytotoxic to Vero cells than 

Fig. 2. Sub-group analysis of the active chemical constituents (IC50) tested against 3CLpro and PLpro 
SARS-CoV.
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indigo and beta-sitosterol. Therefore, they may be considered as potential leads in the 
development of inhibitors of SARS-CoV and SARS-CoV-2 3CLpro.

Similarly, in a quest to find inhibitors of viral replication in SARS-CoV, Ji-Y Park et al. 
(37) focused on the inhibitory action of naturally derived tanshinones against 3CLpro and 
PLpro of the virus. All the isolates were found in the lipophilic fraction (n-hexane) of S. milt-
iorrhiza extracts. The 3CLpro inhibitory potency of the compounds, dihydrotanshinone I (5), 
cryptotanshinone (6), tanshinone IIB (7), methyl tanshinonate (8), tanshinone I (9), rosmari-
quinone (10) and tanshinone IIA (11), ranged from 14.4 to 226.7 mmol L–1, whereas all the 
isolated compounds (5–11) showed inhibitory activities to both 3CLpro and PLpro. The ac-
tivity was significantly affected by subtle changes in the structure. Notably, dihydrotanshi-
none I (5) (IC50 = 14.4 mmol L–1) showed ~16-fold superior potency compared to cryptotanshi-
none (6) (IC50 = 226.7 mmol L–1) (Fig. 5). Cryptotanshinone (6) exhibited the lowest inhibitory 
activity compared to the compounds with furan moiety. The introduction of the hydroxy-
methyl group on the D-ring of tanshinone IIB (7) increased its enzyme inhibitory activity 
with an IC50 value of 24.8 mmol L–1 (Fig. 5). The corresponding methyl ester on the D-ring, 
methyl tanshinonate (8), also showed a similar potency enhancement (IC50 = 21.1 mmol L–1). 
In contrast, the dihydrofuran moiety of dihydrotanshinone (IC50 = 14.4 mmol L–1) showed 
higher inhibitory activity against 3CLpro than tanshinone I (9) (IC50 = 38.7 mmol L–1).

The isolated compounds were also tested against PLpro, and surprisingly, cryptotan-
shinone (6) displayed the most potent inhibitory activity (IC50 = 0.8 mmol L–1), whereas 
tanshinone I (9) (IC50 = 8.8 mmol L–1) and dihydrotanshinone I (5) (IC50 = 4.9 mmol L–1) exhib-
ited similar inhibitory potencies possibly due to their identical ring-A structure (Fig. 5).

Interestingly, the structurally related abietane analog, rosmariquinone (10), displayed 
significant activity against both 3CLpro and PLpro with IC50 values of 21.1 and 30.0 

Fig. 4. Chemical structure of sinigirin and hesperetin isolated from I. indigotica.

Fig. 3. Chemical structure of terrestriamide and terrestriamine isolated from T. terrestris fruits.
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mmol L–1, resp. The introduction of a three-ringed abietane analog, rosmariquinone (10), 
showed simple reversible slow-binding inhibitor and mixed-type inhibition. In addition, 
tanshinone I (9) showed the most potent DUB activity with an IC50 value of 0.7 mmol L–1. 
The results from the isolated compounds merit further examination for their effect on the 
inhibition of SARS-CoV-2.

Luo et al. (38) reported twelve plants as 3CLpro inhibitors (Table I). The extracts/frac-
tions of Rheum palmatum L. such as RH10, RH11, RH12, RH121, RH122, RH124 and RH125 
significantly inhibited SARS coronavirus 3C-like protease. Fraction RH121 (IC50 = 13.76 ± 
0.03 mg mL–1) (Fig. 6) emerged as highly potent anti-SARS-CoV therapeutic agent. The 
ethanolic extracts of rhubarb showed no cytotoxicity at 20 mg mL–1, which partly makes 
them an excellent tool for anti-coronavirus drug screening. Rhubarb is plentiful in China 
as traditional medicine for viral diseases.

Ji-Y Park et al. (39) showed the significant inhibition of 3CLpro and PLpro by EtOAc-
soluble fraction of ethanolic extract of Angelica keiskei (75 and 88 % inhibition at 30 
mg mL–1, resp.). Nine alkylated chalcones, namely isobavachalcone (12), 4-hydroxyderricin 

Fig. 5. Chemical structures and inhibitory effects of isolated compounds from S. miltiorrhiza. 

Compd.
IC50 (µmol L–1)

3CLpro PLpro

Tanshinone IIA 89.1 ± 5.2 1.6 ± 0.5

Tanshinone IIB 24.8 ± 5.2 10.7 ± 1.7

Methyl tanshinonate 21.1 ± 0.8 9.2 ± 2.8

Cryptotanshinone 226.7 ± 6.2 0.8 ± 0.2

Tanshinone I 38.7 ± 8.2 8.8 ± 0.4

Dihydrotanshinone I 14.4 ± 0.7 4.9 ± 1.2

Rosmariquinone 21.1 ± 0.8 30.0 ± 5.5
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(13), xanthoangelol (14), xanthoangelol F (15), xanthoangelol D (16), xanthoangelol E (17), 
xanthoangelol B (18), xanthoangelol G (19), xanthokeistal A (20), and psoralen (21) and four 
coumarins, bergapten (22), xanthotoxin (23) and isopimpinellin (24) were isolated from 
Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV 3CL-
pro and PLpro were reported. Among the different chalcones, flavanones, and coumarins 
isolated from the plant (Table I), xanthoangelol E (12) containing the perhydroxyl group 
showed 3CLpro and PLpro inhibitory potencies (IC50 = 11.4 and 1.2 mmol L–1) that are 5- to 
40-fold superior to other analogs (Fig. 7). The structure-activity relationship analysis 
showed that the peroxide unit on hemiterpene might influence the polyhydroxylated 
chain’s binding and conformational stability through intramolecular hydrogen bonding. 
The optimization of this compound in the development of protease inhibitors may yield 
an effective anti-SARS-CoV-2 agent.

Papyriflavonol A (24), a polyphenol, has been reported as the most potent PLpro in-
hibitor with an IC50 value of 3.7 mmol L–1 compared to other isolated polyphenols from 
Broussonetia papyrifera (40). All the isolated polyphenols were more potent against PLpro 
than 3CLpro (Table I). An evaluation of the structure-activity relationship revealed that 
the prenyl groups’ position was beneficial to inhibitory potency of papyriflavonol A (24) 
(Fig. 8). Hence, the significant activity of this compound showed that it can be further de-
veloped as an anti-coronavirus agent targeting PLpro and 3CLpro proteases.

Ryu et al. (41) reported the SARS-CoV 3CL pro-activity of eight diterpenoids and four 
bioflavonoids isolated from Torreya nucifera. T. nucifera is a slow-growing, coniferous tree 
native to snowy areas near the Sea of Jeju Island in Korea (54). The traditional use of the 
plant in Asian medicine as a remedy for stomachache, hemorrhoids, and rheumatoid ar-
thritis was reported by Bae et al. (55). The pharmacological activity of T. nucifera also in-
cluded antioxidative, antiproliferative, anti-inflammatory, hepatoprotective, and neuro-
protective ones (56–58). The isolated diterpenes, namely, 18-hydroxyferruginol (26), 
hinokiol (27), ferruginol (28), 18-oxoferruginol (29), O-acetyl-18-hydroxyferruginol (30), 

Fig. 6. Flow diagram of separation of various extracts/fractions from Rheum palmatum L. using differ-
ent solvents.
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methyl dehydroabietate (31), isopimaric acid (32) and kayadiol (33), and bioflavonoids 
amentoflavone (34), bilobetin (35), ginkgetin (36) and sciadopitysin (37) from T. nucifera (41) 
were tested in parallel with the standard flavones apigenin (38), luteolin (39) and quercetin 
(40) (Fig. 9). The latter compounds were included to establish the structure-activity 
relationship of biflavones and they inhibited 3CLpro activity with IC50 values of 280.8, 20.2, 
and 23.8 mmol L–1, resp.

The eight in-house diterpenoid libraries tested against SARS-CoV 3CLpro showed 
that ferruginol (28) exhibited superior inhibitory activity (IC50 = 49.6 mmol L–1) which was 
approximately four-fold more potent than that of abietic acid (IC50 = 189.1 mmol L–1). Intro-

Fig. 8. Chemical structure of papyriflavonol A, the promising anti-SARS-CoV compound, isolated 
from B. papyrifera.

Fig. 7. Chemical structures of chalcones and coumarins isolated from A. keiskei.
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Fig. 9. Chemical structures of compounds isolated from the leaves of T. nucifera tested against SARS-
CoV 3CLpro.
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duction of methoxy group to amentoflavone (34) moiety to give bilobetin (35), ginkgetin 
(36) and sciadopitysin (37) bioflavonoids, resulted in the less potent inhibitory activity of 
these compounds (IC50 = 32.0–72.3 mmol L–1). The methoxy group at position C-7 of ginkge-
tin (36) with IC50 of 32.0 mmol L–1 and sciadopitysin (37) with IC50 of 38.4 mmol L–1 might be 
responsible for a two-fold increase in the anti-SARS-CoV 3CLpro inhibitory activity com-
pared to bilobetin (35), with hydroxyl functional group at position C-7 (IC50 = 72.3 mmol L–1). 
The most potent inhibitor, amentoflavone (34) exhibited an IC50 value of 8.3 mmol L–1 to-
ward SARS-CoV 3CLpro, making this compound about 30-fold more potent than apigenin. 
Meanwhile, the inhibitory activity of luteolin (39) (IC50 = 20.2 mmol L–1) was inferior to 
amentoflavone (34) inhibitory activity. The apigenin motif in amentoflavone has possibly 
played a pivotal role in the SARS-CoV 3CLpro inhibition.

Psoralea corylifolia (Leguminosae) is used as a food additive and is distributed from 
India to Southeast Asia. The seeds are found to be helpful as a tonic or an aphrodisiac (50, 
59). Moreover, the phytochemicals from Psoralea corylifolia demonstrate a wide range of 
biological activities such as antioxidant, antibacterial, anti-inflammatory, antidepressant, 
and antiviral (60–69). Kim and coworkers (42) have also shown that the ethanolic extracts 
of P. corylifolia seeds exhibit potent inhibitory potency against SARS-CoV PLpro. Fraction 

Fig. 10. Chemical structures of some promising compounds (isobavachalcone, psoralidin, hirsute-
none) showing anti-SARS-CoV properties, isolated from Alnus japonica.

Fig. 11. Chemical structures of quinone-methide triterpenes isolated from T. regelii.
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purification yielded phenolic phytochemicals with excellent PLpro inhibitory activities, 
isobavachalcone (41) and psoralidin (42) being the most potent inhibitors with IC50 values 
of 7.3 and 4.2 mmol L–1, resp. (Fig. 10). In another study reported by J.-Y. Park and colleagues 
(43) hirsutenone (43), isolated from Alnus japonica, a diarylheptanoid, showed the strongest 
inhibition of PLpro with an IC50 value of 4.1 mmol L–1. The presence of catechol and a,b-
unsaturated carbonyl moiety was found to be critical for its inhibitory potency (Fig. 10).

Furthermore, among the isolated compounds of Triterygium regelii as shown in Table 
I, iguesterin (44) (IC50 = 2.6 mmol L–1) was identified as a superior inhibitor of anti-SARS-
CoV 3CLpro compared to quinone-methide triterpenes [tingenone (45) with IC50 = 9.9 mmol 

Fig. 12. Chemical structure of TF3, TF2B and tannic acid isolated from black tea extract.
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Fig. 13. Chemical structures of isolated flavonoids with anti-SARS-COV activity from the fruits of 
Paulownia tomentosa.

L–1 and celasterol (46) with IC50 = 10.3 mmol L–1)] (Fig. 11). Pristimerin (47) substituted with 
methyl ester group inhibited SARS-CoV 3CLpro activity which was two-fold greater in 
potency (IC50 = 5.5 mmol L–1) than celasterol (46).

The existing literature has shown that green and black tea constitutes 20 and 78 %, 
resp., of global tea consumption, whereas, approximately 2 % is consumed as oolong tea 
(70, 71). Interestingly, these teas are from the same plant species, namely Camellia sinensis. 
These tea types also differ based on the variety of Camellia sinensis used in their produc-
tion. For instance, green teas are made from smaller young leaves and leaf buds (Camellia 
sinensis var. sinensis), while black, oolong, and Pu-erh teas are made from broad leaves 
(Camellia sinensis var. Assamica). In addition, the crucial factor that affects the production of 
a particular tea is oxidation, and the process begins from leaf picking to dryness, wilting, 
rolling, treating and preserving. The polyphenolic content in these varieties confers a 
broad spectrum of biological activities including antimicrobial, antifungal, antitoxin, anti
oxidant and antiviral (72–75). Accordingly, Chen et al. (45) explored four different varieties 
of tea, viz., green, puer, oolong and black tea, against SARS-CoV 3CLpro. Along with 
theaflavin (TF1), a mixture of theaflavin-3’-gallate (TF2b) and theaflavin-3-gallate (TF2a), 
three polyphenol compounds – theaflavin-3,3’-digallate (TF3) (48), isotheaflavin-3’-gallate 
(TF2B) (49) and tannic acid (50) were abundantly identified in the extract of black tea as 
effective anti-SARS-CoV inhibitors (IC50 = 9.5, 7.0 and 3.0 mmol L–1, resp.) (Fig. 12). Notably, 
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Fig. 13. Continued.

it will be very interesting to explore whether drinking black tea can be used to prevent or 
treat COVID-19 infection since both SARS-CoV and SARS-CoV-2 are known to dynami-
cally replicate in the gastrointestinal tract.

A similar study evaluated twelve polyhydroxy compounds isolated from Paulownia 
tomentosa against SARS-CoV PLpro (Fig. 13) (47). Notably, compounds with a 3,4-di-
hydro-2H-pyran motif [tomentin A (51), tomentin B (52) and tomentin E (55)] with IC50 
values ranging from 5.0‒6.3 mmol L–1 were more effective PLpro inhibitors than other iso-
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Fig. 14. Chemical structures of diterpenoids 63–72, sesquiterpenoids 73 and 74, triterpenoids 75 and 
76 lignoids 77–81, phenolic compound (curcumin, 82) and two positive controls, niclosamide (83) and 
valinomycin (84).
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lated compounds, namely, tomentin C (53), tomentin D (54), 3’-O-methyldiplacol (56), 3’-O-
methyldiplacone (57), 4’-O-methyldiplacone (58), mimulone (59), diplacone (61), and 6-ge-
ranyl-4’,5,7-trihydroxy-3’,5’-dimethoxyflavanone (62) with IC50 values ranging from 9.2‒14.4 
mmol L–1.

Wen et al. (46) reported the efficacy of Cibotium baromet z and Dioscorea batatas extracts 
against SARS-CoV 3CLpro at concentrations between 25 and 200 mg mL–1 (Table I). Metha-
nolic extracts of these plants displayed significant inhibitory potencies with 50 %-inhibi-
tory values of 39 and 44 mg mL–1, resp. Moreover, the anti-SARS-CoV efficacy of Cibotium 
barometz and Dioscorea batatas extracts was superior compared to Isatis indigotica, Torreya 
nucifera and tea extract with 50 %-inhibitory values of 53.8, 100 and 125 mg mL–1, resp.

Wen and colleagues (46) examined the anti-SAR CoV activities of 221 phytocom-
pounds by exploring cell-based assay to determine the SARS CoV-induced cytopathogenic 
outcome on Vero E6 cells. As shown in Fig. 14, twenty out of the tested compounds emerged 
as potent anti-SARS CoV agents at concentrations between 3.3 and 10 mmol L–1, including ten 
diterpenoids, namely, ferruginol (63) dehydroabieta-7-one (64), sugiol (65), cryptojaponol 
(66), 8-b-hydroxyabieta-9(11),13-dien-12-one (67), 7-b-hydroxydeoxycryptojaponol (68), 
6,7-dehydroroyleanone (69), 3-b-12-diacetoxyabieta-6,8,11,13-tetraene (70), pinusolidic acid 
(71), forskolin(72), two sesquiterpenoids, namely, cedrane-3-b,12-diol (73) and R-cadinol 
(74), two triterpenoids [betulinic acid (75) and betulonic acid (76)], five lignoids [hinokinin 
(77), savinin (78), 4,4’-O-benzoylisolariciresinol (79), honokiol (80), magnolol (81)], phenolic 
compound, curcumin (82), whereas niclosamide (83) and valinomycin were used as the 
reference compounds. Further, the 22 compounds were evaluated in a 3CL protease inhibi-
tion assay to identify the probable sites on the virus targeted by the specific anti-SARS CoV 
compounds using quenched fluorescence energy transfer (FRET) method. The results 
showed that diterpenoids (63–72) lacked SARS-CoV 3CL protease inhibition at concentra-
tions less than 100 mmol L–1. Betulinic acid (75), savinin (78), curcumin (82) and niclosamide 
(83) showed the highest inhibitory activity on 3CL protease with IC50 values of 10, 25, 40 
and 40 mmol L–1, resp., whereas betulonic acid (76) and hinokinin (77) [analogues to 
betulinic acid (75) and savinin (78)], resp., inhibited 3CL-protease activity with IC50 values 
> 100 mmol L–1. Hence, savinin, a lignoid purified from ethyl acetate extracts of the heart-
wood of Chamaecyparis obtuse var. formosanal, and betulinic acid emerged as the most 
potent anti-SARS-CoV compounds (IC50 = 25 and 10 mmol L–1, resp.) (25). The inhibitory 
potential of savinin for 3CLpro of SARS-CoV-2 is conceived by the presence of benzo[1,3]
dioxole moiety.

CONCLUSIONS

The present study unveils plant extracts with potent inhibitory activities against 
SARS-CoV. More importantly, the literature analysis revealed that the fraction RH121 of 
Rheum palmatum L. with IC50 = 13.76 ± 0.03 mg mL–1, along with compounds isolated from 
other plants, such as terrestrimine isolated from Tribulus terrestris, cryptotanshinone, 
tanshinone IIA and dihydrotanshinone I (Salvia miltiorrhiza), xanthoangelol E (Angelica 
keiskei), papyriflavonol A (Broussonetia papyrifera), psoralidin (Psoralea corylifolia), hirsu
tenone (Alnus japonica), tannic acid (Camellia sinensis var. assamica) and tomentin E (Paulownia 
tomentosa) with IC50 values ranging from 0.6‒5 mmol L–1 were excellent candidates for 
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anti-SARS-CoV targeting PLpro. Meanwhile, iguesterin with an IC50 value of 2.6 ± 0.6 mmol 
L–1 emerged as the most potent anti-SARS-CoV targeting 3CLpro.

According to all the extracted data, phytotherapy has offered a large and encouraging 
concept to new, safe and effective anti-SARS-CoV-2 agents. Consequently, the inhibitory 
potency of these medicinal plants yearns for large-scale research and development to 
validate their efficacy and safety for combating emerging coronavirus diseases. We also 
hope these findings will motivate researchers to explore the structural architecture of 
these compounds for the discovery of new antiviral drugs against SARS-CoVs.
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